量化数据就是用数字表示,可以进行一定计算的数据,比如说人数、考试得分;类别数据仅仅用于分类,比如说性别。#p#量化数据是将一些不具体,模糊的因素用具体的数据来表
量化数据是将一些不具体,模糊的因素用具体的数据来表示,以一定范围内线性变换的数据反映自然界或社会的状态,从而达到分析比较的目的。
类别数据是按照现象的某种属性对其进行分类或分组而得到的反映事物类型的数据,又称定类数据。为了便于计算机处理,通常用数字代码来表述各个类别,比如,用1表示“男性”,0表示“女性”,但是1和0等只是数据的代码,它们之间没有数量上的关系和差异。
扩展资料:
类别数据由用户或专家在模式级显式地说明属性的偏序:通常,分类属性或维的概念分层涉及一组属性。用户或专家在模式级通过说明属性的偏序或全序,可以很容易地定义概念分层。
定属性集中每个属性不同值的个数自动地产生概念分层。具有最多不同值的属性放在分层结构的最低层。一个属性的不同值个数越少,它在所产生的概念分层结构中所处的层次越高。在许多情况下,这种启发式规则都很顶用。
参考资料来源:
百度百科——分类数据
百度百科——量化
类别数据是按照现象的某种属性对其进行分类或分组而得到的反映事物类型的数据,又称定类数据。
虽然量化分析可以帮助更加方便和直观地衡量风险和收益,但需要强调指出的是,美国华尔街顶级量化金融大师、哥伦比亚大学著名教授伊曼纽尔·德曼,在《数学建模如何诱骗了华尔街》一文中,毫无忌讳地承认:根本不可能(通过数理分析方法)发明出一个能够预测股票价格将会如何变化的模型;如果我们相信人类行为可完全遵守数学法则,从而把有着诸多限制的模型与理论相混淆的话,其结果肯定会是一场灾难。
量化数据就是用数字表示,可以进行一定计算的数据,比如说人数、考试得分;类别数据仅仅用于分类,比如说性别。
最多设置5个标签!
量化数据是将一些不具体,模糊的因素用具体的数据来表示,以一定范围内线性变换的数据反映自然界或社会的状态,从而达到分析比较的目的。
类别数据是按照现象的某种属性对其进行分类或分组而得到的反映事物类型的数据,又称定类数据。为了便于计算机处理,通常用数字代码来表述各个类别,比如,用1表示“男性”,0表示“女性”,但是1和0等只是数据的代码,它们之间没有数量上的关系和差异。
量化数据是将一些不具体,模糊的因素用具体的数据来表示,以一定范围内线性变换的数据反映自然界或社会的状态,从而达到分析比较的目的。
类别数据是按照现象的某种属性对其进行分类或分组而得到的反映事物类型的数据,又称定类数据。为了便于计算机处理,通常用数字代码来表述各个类别,比如,用1表示“男性”,0表示“女性”,但是1和0等只是数据的代码,它们之间没有数量上的关系和差异。
扩展资料:
类别数据由用户或专家在模式级显式地说明属性的偏序:通常,分类属性或维的概念分层涉及一组属性。用户或专家在模式级通过说明属性的偏序或全序,可以很容易地定义概念分层。
定属性集中每个属性不同值的个数自动地产生概念分层。具有最多不同值的属性放在分层结构的最低层。一个属性的不同值个数越少,它在所产生的概念分层结构中所处的层次越高。在许多情况下,这种启发式规则都很顶用。
参考资料来源:
百度百科——分类数据
百度百科——量化
量化数据是将一些不具体,模糊的因素用具体的数据来表示,以一定范围内线性变换的数据反映自然界或社会的状态,从而达到分析比较的目的。
类别数据是按照现象的某种属性对其进行分类或分组而得到的反映事物类型的数据,又称定类数据。
虽然量化分析可以帮助更加方便和直观地衡量风险和收益,但需要强调指出的是,美国华尔街顶级量化金融大师、哥伦比亚大学著名教授伊曼纽尔·德曼,在《数学建模如何诱骗了华尔街》一文中,毫无忌讳地承认:根本不可能(通过数理分析方法)发明出一个能够预测股票价格将会如何变化的模型;如果我们相信人类行为可完全遵守数学法则,从而把有着诸多限制的模型与理论相混淆的话,其结果肯定会是一场灾难。
量化数据就是用数字表示,可以进行一定计算的数据,比如说人数、考试得分;类别数据仅仅用于分类,比如说性别。