y=√[(x-0)+(0-1)]+√[(x-2)+(0-2)]前者就表示点M(x,0)到点Q(0,1)的距离,后者就表示点M(x,0)到点P(2,2)的距离,则
y=√[(x-0)²+(0-1)²]+√[(x-2)²+(0-2)²]前者就表示点M(x,0)到点Q(0,1)的距离,后者就表示点M(x,0)到点P(2,2)的距离,则:y=|MQ|+|MP|,则y的最小值就是|PQ|=√5,则此函数的值域是[√5,+∞)追问
答案是根号13,P应该是[2,-2]
1、按照我的解答,y的最小值应该是x轴上的点到P、Q的距离之和,由于P、Q位于x轴的同侧,则应将点P关于x轴对称过去得到P'(2,-2),则y的最小值应该是|P'Q|=√13;2、若将函数改写成y=√[(x-0)²+(0-1)²]+√[(x-2)²+(0+2)²],此时可取Q(0,1)、P(2,-2),此时由于点P、Q位于x轴的两侧,则y的最小值直接就是|PQ|=√133、这是我的疏忽,我没注意。。
最多设置5个标签!
y=√[(x-0)²+(0-1)²]+√[(x-2)²+(0-2)²]
追答前者就表示点M(x,0)到点Q(0,1)的距离,后者就表示点M(x,0)到点P(2,2)的距离,则:
y=|MQ|+|MP|,则y的最小值就是|PQ|=√5,则此函数的值域是[√5,+∞)追问