我现在是高一的数学老师,下面是我的一点建议:上课注意听老师讲的典型题,然后在听明白的基础上最相应的题型练习,不要求多,一定要把书上的题先作会,再做老师发的卷子和
数学课堂学习的原则和基本方法 根据心理学的理论和数学的特点,分析数学课堂学习,应遵循以下原则: 动力性原则,循序渐进原则,独立思考原则,及时反馈原则,理论联系实际 的原则,并由此提出了以下的数学学习方法: 1.求教与自学相结合 在学习过程中,即要争取教师的指导和帮助,但是又不能处处依靠教师, 必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基 础上去寻求教师和同学的帮助。 2.学习与思考相结合 在学习过程中,对课本的内容要认真研究,提出疑问,追本究源。对每 一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴 含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径 和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。 3.学用结合,勤于实践 在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中 抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实 例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。 4.博观约取,由博返约 课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中, 除了认真研究课本以外,还要阅读有关的课外资料,来扩大知识领域。同时 在广泛阅读的基础上,进行认真研究,掌握其知识结构。 5.既有模仿,又有创新 模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该 在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有 的框框,不囿于现成的模式。 6.及时复习增强记忆 课堂上学习的内容,必须当天消化,要先复习,后做练习,复习工作必 须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、 深刻化。 7.总结学习经验,评价学习效果 学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、 解题规律的掌握、学习方法与态度的调整和评判能力的提高。在学习过程中, 应注意总结听课、阅读和解题中的收获和体会。更深一步,是涉及到具体内容的学习方法。如,怎样学习数学概念、数 学公式、法则、数学定理、数学语言;怎样提高抽象概括能力、运算能力、 逻辑思维能力、空间想象能力、分析问题和解决问题的能力;怎样解数学题; 怎样克服学习中的差错;怎样获取学习的反馈信息;怎样进行解题过程的评 价与总结;怎样准备考试。对这些问题的进一步的研究和探索将更有利于中 学生对数学的学习。 历史上许多优秀的教育家、科学家,他们都有一套适合自己特点的学习 方法。比如,我国古代数学家祖冲之的学习方法概括起来是四个字:搜炼古 今。搜就是搜索,博采前人的成就,广泛地研究;炼是提炼,把各种主张拿 来比较研究,再经过自己的消化和提炼。著名的物理学家爱因斯坦的学习经验是:依靠自学,注意自主,穷根究底,大胆想象,力求理解,重视实验, 弄通数学,研究哲学等八个方面。如果我们能将这些教育家、科学家的更多 的学习经验挖掘整理出来,将是一批非常宝贵的财富,这也是学习方法研究 中的一个重要方面。 学习方法这一问题虽已为广大的教育工作者所重视,并且提出了不少好 的学习方法。但是由于长期以来“以教代学”的影响,大部分学生对自己的 学习方法是否良好还没有引起注意。许多学生还没有根据自己的特点形成适 合自己的有效的学习方法。因此作为一个自觉的学生,就必须在学习知识的 同时,掌握科学的学习方法。1.阅读课文 这是预习以下几个步骤的基础(参看后面介绍的各种阅读方法)。 2.亲自推导公式 数学课程中有大量的公式,有的课本上有推导过程;有的课本上没有推 导过程,只是把公式的最初形式写出来,然后说一句,“经推导可得”,就 把结果式子写出来了。无论课本上有无推导过程,学生预习的时候应当自己 合上书亲自把公式推导一遍;书上有推导过程的,可把自己推导过程和书上 的相对照;书上没有推导过程的可在课堂上和老师推导的过程相对照;以便 发现自己有没有推导错的地方。 自行推导公式既是自己在独立地分析问题和解决问题,又是在发现自己 的知识准备情况。通常,推导不下去或推导出现错误,都是由于自己的知识 准备不够,要么是学过的忘记了,要么是有些内容自己还没有学过,只要设 法补上,自己也就进步了。 3.扫除绊脚石 数学知识连续性强,前面的概念不理解,后面的课程无法学下去。预习 的时候发现学过的概念有不明白、不清楚的,一定要在课前搞清楚。 4.汇集定理、定律、公式、常数等 数学课程中大量的定理、定律、公式、常数、特定符号等,是学习数学 课程的最重要的内容,是需要深刻理解,牢牢记住的。所以,在预习的时候, 无论你做不做预习笔记,都应当把这些内容多带带汇集在一起,每抄录一遍, 则加深一次印象。上课的时候,老师讲到这些地方时,应把自己预习时的理 解和老师讲的相对照,看自己有没有理解错的地方。 5.试做练习 数学课本上的练习题都是为巩固所学的知识而出的。预习中可以试做那 些习题。之所以说试做,是因为并不强调要做对,而是用来检验自己预习的 效果。预习效果好,一般书后所附的习题是可以做出来的。数学概念学习八法 1.温故法 不论是皮亚杰还是奥苏伯尔在概念学习理论方面都认为概念教学的起步 是在已有的认知结论的基础上进行的。因此,教学新概念前,如果能对学生 认知结构中原有的概念适当作一些结构上的变化,引入新概念,则有利于促 进新概念的形成。 2.类比法 抓住新旧知识的本质联系,有目的、有计划地让学生将有关新旧知识进 行类比,就能很快地得出新旧知识在某些属性上的相同(相似)的结构而引 进概念。 3.喻理法 为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概 念,谓之喻理导入法。 如,学“用字母表示数”时,先出示的两句话:“阿 Q和小 D在看《W 的悲剧》。”、“我在A市S街上遇见一位朋友。”问:这两个句子中的字 母各表示什么?再出示扑克牌“红桃 A”,要求学生回答这里的A则表示什 么?最后出示等式“0.5×x=3.5”,擦去等号及 3.5,变成“0.5×x”后, 问两道式子里的X各表示什么?根据学生的回答,教师结合板书进行小结: 字母可以表示人名、地名和数,一个字母可以表示一个数,也可以表示任何 数。 这样,枯燥的概念变得生动、有趣,同学们在由衷的喜悦中进入了“字 母表示数”概念的学习。 4.置疑法 通过揭示数学自身的矛盾来引入新概念,以突出引进新概念的必要性和 合理性,调动了解新概念的强烈动机和愿望。 5.演示法 有些教学概念,如果把它最本质的属性用恰当的图形表示出来,把数与 形结合起来,使感性材料的提供更为丰富,则会收到良好效果,易于理解和 掌握。 如,学“求一个数的几倍是多少”的应用题,重要的是建立“倍”的概 念。引进这个概念,可出示2只一行的白蝴蝶图,再 2只、2只地出示3个2 只的第二行花蝴蝶图,结合演示,通过循序答问,使学生清晰地认识到:花 蝴蝶与白蝴蝶比较,白蝴蝶1个2只,花蝴蝶是3个2只;把一个2只当作1份,则白蝴蝶的只数相当于 1份,花蝴蝶就有 3份。用数学上的话说:花 蝴蝶与白蝴蝶比,把白蝴蝶当作一倍,花蝴蝶的只数就是白蝴蝶的3倍,这 样,从演示图形中让学生看到从“个数”到“份数”,再引出倍数,很快地 触及了概念的本质。 6.问答法 引入概念采用问答式,能在疑、答、辩的过程中,步步探幽,引人入胜。 7.作图法 用直尺、三角板和圆规等作图工具画出已学过的图形,是学习几何的最 基本的能力。通过作图揭示新概念的本质属性,就可以从画图引入这些概念。 8.计算法通过计算能揭示新概念的本质属性,因此,可以从学生所迅速的计算引 入新概念,如讲“余数”时,可以让学生计算下列各题: (1) 3个人吃10个苹果,平均每人吃几个? (2) 23名同学植100棵树,每人平均种几棵? 学生能很容易地列出算式,当计算时,见到余下来的数会不知所措,这 时教师再指出: (1)题竖式中余下的“1”;(2)题竖式中余下的“8”,都小于除数, 在除法里叫做“余数”。学习新概念的方法很多,但彼此并不是孤立的,就 是同一个内容的学习方法也没有固定的模式,有时需要互相配合才能收到良 好的效果,如也可以这样引入“扇形’概念,让学生把课前带的一把摺扇一 折一折地从小到大展开,引导学生注意观察,然后概括出: 第一,折扇有一个固定的轴; 第二,折扇的“骨”等长。 然后再要求学生在已知圆内作两条半径,使它的夹角为20°、40°、120 °、……引导学生观察所围成的图形与刚才展开的折扇有哪些相似之处,最 后概括出扇形的意义。数学定义学习的步骤和方法 中学数学教学大纲指出“正确理解数学概念是掌握数学基础知识的前 提”。数学概念是现实世界空间形式和数量关系及其特征在思维中的反映。 概念是一种思维形式,客观事物通过人的感官形成感觉、知觉,通过大脑加 工——比较、分析、综合、概括——形成概念。建立一个概念,一般是运用 由特殊到一般、由局部到整体的观察方法,遵循由现象到本质,由具体到抽 象的认识规律,按照辩证唯物主义的观点去分析,找出事物的外部联系和内 在的本质。因此概念是培养学生逻辑思维能力的重要内容,概念又是思维的 工具,一切分析、推理、想象都要依据概念和运用概念,所以正确理解概念 是提高学生数学能力的前提,相反地,如果对学习概念重视不够,或是学生 方法不当,既影响对概念的理解和运用,也直接影响着思维能力的发展,就 会表现出路闭塞、逻辑紊乱的低能。中学数学中的概念多以定义的形式出现, 因此必须有学习定义的正确方法,一般说来,有以下几个环节。 1.从定义的建立过程明确定义 定义是在其形成的实际过程中逐步明朗化的。任何一个定义的产生都有 它的实际过程,学习定义时要想象前人发现定义过程,从定义形成的过程中, 认识其定义的必要性和合理性,这样可以达到理解定义训练思维的目的。 一个定义的形成,一般地说有四个阶段:(1)提出问题。 提出数学定义的常见方法有以下几种: ①从实例提出。理论的基础是实践,高中数学中大量的定义,如集合、 映射、一一映射、函数、等差数列、柱体、锥体等,都是从实例中归纳总结 出来的。 ②通过迁移提出。数学的特征之一是它的系统性,因此常常可以从旧知 识过渡迁移而得出新的定义。如球的定义可以从圆的定义迁移而得出;双曲 线的定义可以从椭圆的定义迁移而得出;反三角函数的定义可以从反函数的 定义结合原来的习题迁移而得出等。 ③观察图形或实物提出。“形”是数学研究的对象之一。观察函数的图 形可以得出函数的单调性、增减性、奇偶性、周期性等定义,观察空间的直 线与直线、直线与平面、平面和平面的位置关系可以得出异面直线、直线与 平面平行、相并和垂直的定义,平面与平面平行、相交和垂直的定义等。 ④从形成的过程提出。数学中有些定义是通过实际操作而得出的,其操 作过程就是定义,这样的定义叫形成性定义。如圆、椭圆的定义,异面直线 所成的角、直线与平面所成的角、二面角的平面角等。 (2)探索问题的解答。 如果学生了解了一个新定义提出的方法,那么心理状况必是:对如何定义有迫切的愿望,因而兴趣被激发,积极主动地去思考得出概念的过程,急 切想通过自己冷静的思考去试寻问题的解答。这样既有利于掌握定义的本 质,又能较快地发展逻辑思维能力,提高分析问题和解决问题的能力。相反 地,如果只知是什么,而不知定义得出的过程,那么所学的知识往往是僵死 的,妨碍对定义的灵活运用,能力也得不到应有的提高。因此应该掌握并探 索问题解答的正确方法。 ①从实例提出的定义,要对所举各例进行分析,去掉其个别的、非本质 的东西,抓住其共同的、本质的东西,抽象概括寻求问题的解答。②对通过迁移提出的定义,要在对旧知识准确理解与运用的基础上,进 行比较、分析、推理,去寻求问题的解答。 ③对观察图形或实物得出的定义,按照观察的目的,运用正确的观察方 法,认真观察,仔细分析,同时还要对正反两方面的图形加以比较,去寻求 问题的解答。 ④对于形成性定义,要亲自动手进行实际操作,同时操作的每一步都要 进行认真地分析,找出操作能顺利进行的条件或操作不能进行的原因,写出 使操作能顺利进行的操作过程,去寻求问题的解答。 (3)检验解答的合理性。 检验解答的合理性,可以通过实践,也可以利用已有的知识进行逻辑推 理。若发现有不合理的因素,要加以修改或补充,这样既可加深对定义的理 解,又可培养学生严谨的作风。 (4)写出合理的解答,即为定义。 2.剖析定义 (1)明确定义的本质和关键。建立定义以后,要养成剖析定义的习惯,首先要认真阅读课文,逐字逐句地进行推敲,结合定义形成的过程明确定义 的本质和关键。 (2)明确定义的充要性。凡是定义都是充要命题,如直线与平面垂直的 定义“如果一条直线和平面内的任何一条直线都垂直,就说这条直线和这个 平面互相垂直”;反过来,“如果一条直线垂直于一个平面,那么这条直线 就垂直于这个平面内的任何一条直线”仍成立,即直线ι垂直于平面α是ι 垂直于平面α内的任何一条直线的充要条件。又如椭圆的定义“平面内与两 个定点 F、F的距离之和等于常数 2a(2a>|FF|)的点的轨迹叫椭圆”; 1 2 1 2 反过来“椭圆上的任意一点到两个定点F、F的距离之和都等于常数 2a”。 1 2 再如“若函数f(x)对于定义内的每一个值x,都有f(-x)=f(x),则f (x)叫做偶函数”;反过来,“如果函数 f(x)是偶函数,那么对于定义 域内的每一个值x都有f(-x)=f(x)”等等。 (3)突破定义的难点。对于一个定义,应突破它的难点。如 a+bi(a, b ∈ R)为什么表示一个数,周期函数定义中的“对于函数定义域内的每一 个x的值”,数列的极限的定义中的“ε”、“N”等。都是难以理解的,要 认真思考,设法突破它,如举出实例并与定义相对照。加深对难点的理解, 纠正认识中的错误,以达到准确地理解定义的目的。 (4)明确定义的基本性质。对于一个定义,不仅要掌握其本身,还应掌 握它的一些基本性质。 (5)逆向分析。人的思维是可逆的。但必须有意识地去培养这种逆向思 维活动的能力。前面说过,定义都是充要命题,但对某些定义还应从多方设 问并思考。如对于正棱锥的概念可提出如下的几个问题,并思考。 ①侧棱相等的棱锥是否一定是正棱锥?(不一定) ②侧面与底面所成的角相等的棱锥是否一定是正棱锥?(不一定) ③底面是正多边形的棱锥是否一定是正棱锥?(不一定) ④符合以上三条中的两条的棱锥是这一定是正棱锥?(一定) ⑤侧面是全等的等腰三角形的棱锥是否一定是正棱锥?(一定)(一定 的加以证明,不一定的举出反例)。 3.记忆定义只有在记忆中能随时再现的知识,才能有助于提高分析问题和解决问题 的能力,因此必须准确记忆定义。至于记忆方法这里不想多谈,只谈谈记忆 定义不应是孤立的。在建立定义时就要开始记忆,在剖析定义时要巩固记忆, 特别要弄清定义的基本结构。因为定义是充要命题,所以一般地说,定义是 由条件和结论两部分构成的。一般的句子形式是“如果…,那么…”。或“设… 则…”。对于逻辑结构复杂的定义,一般地是“设…,如果…,且…,那么…。” 如函数的定义“设f:A→B就是从定义域A到值域B上的函数。”这里“设…,” 是前提条件,“如果…”,是加强条件,“且…,”是又加强的条件,总之 这是条件部分,“那么…”是结论部分。 4.应用定义 应用定义解答具体问题的过程是培养演绎推理能力的过程。应用定义一 般可分三个阶段: (1)复习巩固定义阶段。学习一个新定义之后,要进行复习巩固。首先 要认真阅读教材中给出的定义,领会定义的实质,再要举出实例与定义相对 照,加深对定义的理解,然后解答一些直接应用定义的问题题、判断题、选 择题或是推理计算题。一般地,在一个定义的后面紧跟的例题或练习题往往 是为此而安排的,要认真地,严格地按照定义,用准确的数学语言去解答, 且不可马虎草率,对说不出或出现错误的问题,要深究其原因,并在重新阅 读,复习定义的基础上,澄清定义,纠正错误。 (2)章节应用阶段。学完一章以后,要把本章中相近的定义,或是与原 来学过的相近的定义如排列与组合,球冠与球缺,函数与方程等有意识地用 比较的方法,明确它们的区别和联系。或是批判谬误,在批判错误的过程中, 找出错误的根源,以免产生概念间的互相干扰。 另外,要把本章中与某一定义有关的知识加以总结,与这一概念有关的 例题、练习题以归纳、总结出应用此定义的基本题型。 (3)灵活综合应用定义阶段。学习一个单元之后,由于知识的局限性, 往往很难把某些概念理解透彻,必须到一定的阶段进行这一概念的补课,特 别是数学中具有全局性的重要概念,如算术根及绝对值的概念、函数的概念, 充要条件的概念等,以克服只见树木不见森林的弊病,从而培养分析与综合 能力,训练辨析事物实质的思维能力。数学知识记忆方法 心理学告诉我们,记忆分无意记忆和有意记忆两种。要使记忆对象在大 脑中形成深刻的映象,一般来说要通过反复感知,有些记忆对象,由于有明 显的特征,只要通过一次感知就能记住,经久不忘,这就是无意记忆。有些 记忆对象,由于没有明显特征,即使通过三、五次感知,也很难记住,而且 容易遗忘,这就需要加强有意记忆。 1.口诀记忆法 中学数学中,有些方法如果能编成顺口溜或歌诀,可以帮助记忆。例如, 根据一元二次不等式ax+bx-c>0(a>0,△>0)与ax+bx+c(a>0,△>0) 的解法,可编成乘积或分式不等式的解法口诀:“两大写两旁,两小写中间”。 即两个一次因式之积(或商)大于 0,解答在两根之外;两个一次因式之积 (或商)小于 0,解答在两根之内。当然,使用口诀时,必先将各个一次因 式中X的系数化为正数。利用口诀时,必先将各个一次因式中X的系数化为 正数。利用这一口诀,我们就很容易写出乘积不等式(x-3)·(2x-1)>0 的解是x<-3或X>3,分式不等式<0 1 的解是-2<x< 。这种记忆法对低年级特别适用。 3 2.分类记忆法 遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。例如 求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个); (2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4) 反三角函数的导数(6个)。求导法则有7个,可分为两组来记:(1)和差、 积、商复合函数的导数(4个);(2)反函数、隐函数、幂指数函数的导数 (3个)。 3.“四多”记忆法 要使记忆对象经久不忘,一般来说要经过多次反复的感知。“四多”即 多看、多听、多读、多写。特别是边读边默写,记忆效果更佳。例如,甲对 某组公式单纯抄写四次,乙对同组公式抄写两次然后默写(默写不出时可看 书)两次,实验证明,乙的记忆效果优于甲。 4.静心记忆法 记忆要从平心静气开始,根据一定的记忆目标,找出适合于自己学习特 点的记忆方法。比如记忆环境的选择就因人而异。有人觉得早晨记忆力好; 有人感到晚上记忆力好;有人习惯于边走边读边记;有人则要在安静的环境 下记忆才好等等。不管选择何种方式记忆,都必须保持“心静”。心静才能集中注意力记忆,心静才能形成记忆的优势兴奋中心,记忆需从静始! 5.首次记忆法 首次记忆有四种方式: (1)背诵记忆法。将运算过程和结果在理解的基础上背诵记熟,这种记 忆称为背诵记忆。比如,加法与乘法法则,两数和、差的平方、立方的展开 式等记忆都是背诵记忆。 (2)模型记忆法。有许多数学知识有它具体的模型,我们可以通过模型 来记忆。有些数学知识可有规律的列在图表内,借助于图表来记忆,这些记 忆都称模型记忆。(3)差别记忆法。有些数学知识之间有许多共性,少数异性。要记住它 们,只需记住一个基本的和差异特征,就可以记住其它的了,这种记忆称为 差别记忆。 (4)推理记忆法。许多数学知识之间逻辑关系比较明显,要记住这些知 识,只需记忆一个,而其余可利用推理得到,这种记忆称为推理记忆。 例如,平行四边形的性质,我们只要记住它的定义,由定义推得它的任 一对角线把它分成两上全等三角形,继而又推得它的对边相等,对角相等, 相邻角互补,两条对角线互相平分等性质。 6.重复记忆 重复记忆有三种方式 (1)标志记忆法。在学习某一章节知识时,先看一遍,对于重要部分用 彩笔在下面画上波浪线,在重复记忆时,就不需要将整个章节的内容从头到 尾逐字逐句的看了,只要看到波浪线,在它的启示下就能重复记忆本章节主 要内容,这种记忆称为标志记忆。 (2)回想记忆法。在重复记忆某一章节的知识时,不看具体内容,而是 通过大脑回想达到重复记忆的目的,这种记忆称为回想记忆。在实际记忆时, 回想记忆法与标志记忆法是配合使用的。 (3)使用记忆法。在解数学题时,必须用到已记住的知识,使用一次有 关知识就被重复记忆一次,这种记忆称为使用记忆。使用记忆法是积极的记 忆,效果好。 7.理解记忆法 知识的理解是产生记忆的根本条件,对于数学知识特别要通过理解、掌 握它的逻辑结构体系进行记忆。由于数学是建立在逻辑学基础上的一门学 科,它的概念、法则的建立,定理的论证,公式的推导,无不处于一定的逻 辑体系之中,因此,对于数学知识的理解记忆,主要在于弄清数学知识的逻 辑联系,把握它的来龙去脉,只有理解了的东西才能牢固记住它。因此,数 学中的定理、公式、法则,都必须弄通它的来龙去脉,弄懂它们的证明过程, 以便牢固记住它们。 用好这一方法的关键,在于学习要注意理解,这一方法,不仅对于数学 学习,就是对于其它学科的学习都有着广泛的应用。应十分重视。 8.系统记忆法 有位青年总结自己的经验得出:“总结+消化=记忆”。这正是根据系统 记忆法的思想总结出来的。因为系统记忆法,就是按照数学知识的系统性,把知识进行恰当的比较、分类、条理化,顺理成章,编织成网,这样记住的 就不是零星的知识而是一串,它往往采取列表比较的形式,或抓住主线、内 在联系把重要概念、公式和章节联系串为一个整体。
我现在是高一的数学老师,下面是我的一点建议:上课注意听老师讲的典型题,然后在听明白的基础上最相应的题型练习,不要求多,一定要把书上的题先作会,再做老师发的卷子和老师要讲的题,再这些的基础上找出自己不会的地方,看相应的课外书的相关内容的详解在做限时练习,提高自己的做题效率相信自己,经过这些练习一定能取得好成绩。然后要注意平时多问老师,多和同学讨论问题把知识点弄明白。
高中数学合集百度 {MOD}下载
链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ
提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
高考数学基础知识汇总第一部分 集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;(2) 注意:讨论的时候不要遗忘了 的情况。(3) 第二部分 函数与导数1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、 、 等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。(2)复合函数单调性的判定:①首先将原函数 分解为基本函数:内函数 与外函数 ;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。注意:外函数 的定义域是内函数 的值域。4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵ 是奇函数 ;⑶ 是偶函数 ;⑷奇函数 在原点有定义,则 ;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;6.函数的单调性⑴单调性的定义:① 在区间 上是增函数 当 时有 ;② 在区间 上是减函数 当 时有 ;⑵单调性的判定1 定义法:注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法(见2 (2));④图像法。注:证明单调性主要用定义法和导数法。7.函数的周期性(1)周期性的定义:对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。(2)三角函数的周期① ;② ;③ ;④ ;⑤ ;⑶函数周期的判定①定义法(试值) ②图像法 ③公式法(利用(2)中结论)⑷与周期有关的结论① 或 的周期为 ;② 的图象关于点 中心对称 周期为2 ;③ 的图象关于直线 轴对称 周期为2 ;④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;8.基本初等函数的图像与性质⑴幂函数: ( ;⑵指数函数: ;⑶对数函数: ;⑷正弦函数: ;⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;⑻其它常用函数:1 正比例函数: ;②反比例函数: ;特别的 2 函数 ;9.二次函数:⑴解析式:①一般式: ;②顶点式: , 为顶点;③零点式: 。⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。⑶二次函数问题解决方法:①数形结合;②分类讨论。10.函数图象: ⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法⑵图象变换:1 平移变换:ⅰ ,2 ———“正左负右” ⅱ ———“正上负下”;3 伸缩变换:ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;4 对称变换:ⅰ ;ⅱ ;ⅲ ; ⅳ ;5 翻转变换:ⅰ ———右不动,右向左翻( 在 左侧图象去掉);ⅱ ———上不动,下向上翻(| |在 下面无图象);11.函数图象(曲线)对称性的证明(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;注:①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;12.函数零点的求法:⑴直接法(求 的根);⑵图象法;⑶二分法.13.导数 ⑴导数定义:f(x)在点x0处的导数记作 ;⑵常见函数的导数公式: ① ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ 。⑶导数的四则运算法则: ⑷(理科)复合函数的导数: ⑸导数的应用: ①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?②利用导数判断函数单调性:ⅰ 是增函数;ⅱ 为减函数;ⅲ 为常数; ③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。14.(理科)定积分 ⑴定积分的定义: ⑵定积分的性质:① ( 常数);② ;③ (其中 。⑶微积分基本定理(牛顿—莱布尼兹公式): ⑷定积分的应用:①求曲边梯形的面积: ; 3 求变速直线运动的路程: ;③求变力做功: 。第三部分 三角函数、三角恒等变换与解三角形1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度 ⑵弧长公式: ;扇形面积公式: 。2.三角函数定义:角 中边上任意一点 为 ,设 则: 3.三角函数符号规律:一全正,二正弦,三两切,四余弦;4.诱导公式记忆规律:“函数名不(改)变,符号看象限”;5.⑴ 对称轴: ;对称中心: ; ⑵ 对称轴: ;对称中心: ; 6.同角三角函数的基本关系: ;7.两角和与差的正弦、余弦、正切公式:① ② ③ 。8.二倍角公式:① ;② ;③ 。9.正、余弦定理:⑴正弦定理: ( 是 外接圆直径 )注:① ;② ;③ 。⑵余弦定理: 等三个;注: 等三个。10。几个公式:⑴三角形面积公式: ;⑵内切圆半径r= ;外接圆直径2R= 11.已知 时三角形解的个数的判定: 第四部分 立体几何1.三视图与直观图:注:原图形与直观图面积之比为 。2.表(侧)面积与体积公式:⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h ⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:⑶台体:①表面积:S=S侧+S上底S下底;②侧面积:S侧= ;③体积:V= (S+ )h;⑷球体:①表面积:S= ;②体积:V= 。3.位置关系的证明(主要方法):⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。⑵直线与平面平行:①线面平行的判定定理;②面面平行 线面平行。⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。⑸平面与平面垂直:①定义---两平面所成二面角为直角;②面面垂直的判定定理。注:理科还可用向量法。4.求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角)⑴异面直线所成角的求法:1 平移法:平移直线,2 构造三角形;3 ②补形法:补成正方体、平行六面体、长方体等,4 发现两条异面直线间的关系。注:理科还可用向量法,转化为两直线方向向量的夹角。⑵直线与平面所成的角:①直接法(利用线面角定义);②先求斜线上的点到平面距离h,与斜线段长度作比,得sin 。注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。⑶二面角的求法:①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;②三垂线法:由一个半面内一点作(或找)到另一个半平面的垂线,用三垂线定理或逆定理作出二面角的平面角,再求解;③射影法:利用面积射影公式: ,其中 为平面角的大小; 注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;理科还可用向量法,转化为两个班平面法向量的夹角。5.求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离)⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;⑶点到平面的距离:①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;5 等体积法;理科还可用向量法: 。⑷球面距离:(步骤)(Ⅰ)求线段AB的长;(Ⅱ)求球心角∠AOB的弧度数;(Ⅲ)求劣弧AB的长。6.结论:⑴从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;⑵立平斜公式(最小角定理公式): ⑶正棱锥的各侧面与底面所成的角相等,记为 ,则S侧cos =S底;⑷长方体的性质①长方体体对角线与过同一顶点的三条棱所成的角分别为 则:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。②长方体体对角线与过同一顶点的三侧面所成的角分别为 则有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。⑸正四面体的性质:设棱长为 ,则正四面体的:1 高: ;②对棱间距离: ;③相邻两面所成角余弦值: ;④内切2 球半径: ;外接球半径: ;第五部分 直线与圆1.直线方程⑴点斜式: ;⑵斜截式: ;⑶截距式: ;⑷两点式: ;⑸一般式: ,(A,B不全为0)。(直线的方向向量:( ,法向量( 2.求解线性规划问题的步骤是:(1)列约束条件;(2)作可行域,写目标函数;(3)确定目标函数的最优解。3.两条直线的位置关系:4.直线系5.几个公式⑴设A(x1,y1)、B(x2,y2)、C(x3,y3),⊿ABC的重心G:( );⑵点P(x0,y0)到直线Ax+By+C=0的距离: ;⑶两条平行线Ax+By+C1=0与 Ax+By+C2=0的距离是 ;6.圆的方程:⑴标准方程:① ;② 。⑵一般方程: ( 注:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆 A=C≠0且B=0且D2+E2-4AF>0;7.圆的方程的求法:⑴待定系数法;⑵几何法;⑶圆系法。8.圆系:⑴ ; 注:当 时表示两圆交线。⑵ 。9.点、直线与圆的位置关系:(主要掌握几何法)⑴点与圆的位置关系:( 表示点到圆心的距离)① 点在圆上;② 点在圆内;③ 点在圆外。⑵直线与圆的位置关系:( 表示圆心到直线的距离)① 相切;② 相交;③ 相离。⑶圆与圆的位置关系:( 表示圆心距, 表示两圆半径,且 )① 相离;② 外切;③ 相交;④ 内切;⑤ 内含。10.与圆有关的结论:⑴过圆x2+y2=r2上的点M(x0,y0)的切线方程为:x0x+y0y=r2;过圆(x-a)2+(y-b)2=r2上的点M(x0,y0)的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2;⑵以A(x1,y2)、B(x2,y2)为直径的圆的方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0。第六部分 圆锥曲线1.定义:⑴椭圆: ;⑵双曲线: ;⑶抛物线:略2.结论 ⑴焦半径:①椭圆: (e为离心率); (左“+”右“-”);②抛物线: ⑵弦长公式: ;注:(Ⅰ)焦点弦长:①椭圆: ;②抛物线: =x1+x2+p= ;(Ⅱ)通径(最短弦):①椭圆、双曲线: ;②抛物线:2p。⑶过两点的椭圆、双曲线标准方程可设为: ( 同时大于0时表示椭圆, 时表示双曲线);⑷椭圆中的结论:①内接矩形最大面积 :2ab;②P,Q为椭圆上任意两点,且OP 0Q,则 ;③椭圆焦点三角形:<Ⅰ>. ,( );<Ⅱ>.点 是 内心, 交 于点 ,则 ;④当点 与椭圆短轴顶点重合时 最大; ⑸双曲线中的结论:①双曲线 (a>0,b>0)的渐近线: ; ②共渐进线 的双曲线标准方程为 为参数, ≠0);③双曲线焦点三角形:<Ⅰ>. ,( );<Ⅱ>.P是双曲线 - =1(a>0,b>0)的左(右)支上一点,F1、F2分别为左、右焦点,则△PF1F2的内切圆的圆心横坐标为 ;④双曲线为等轴双曲线 渐近线为 渐近线互相垂直;(6)抛物线中的结论:①抛物线y2=2px(p>0)的焦点弦AB性质:<Ⅰ>. x1x2= ;y1y2=-p2;<Ⅱ>. ;<Ⅲ>.以AB为直径的圆与准线相切;<Ⅳ>.以AF(或BF)为直径的圆与 轴相切;<Ⅴ>. 。 ②抛物线y2=2px(p>0)内结直角三角形OAB的性质:<Ⅰ>. ; <Ⅱ>. 恒过定点 ;<Ⅲ>. 中点轨迹方程: ;<Ⅳ>. ,则 轨迹方程为: ;<Ⅴ>. 。③抛物线y2=2px(p>0),对称轴上一定点 ,则:<Ⅰ>.当 时,顶点到点A距离最小,最小值为 ;<Ⅱ>.当 时,抛物线上有关于 轴对称的两点到点A距离最小,最小值为 。3.直线与圆锥曲线问题解法:⑴直接法(通法):联立直线与圆锥曲线方程,构造一元二次方程求解。注意以下问题:①联立的关于“ ”还是关于“ ”的一元二次方程?②直线斜率不存在时考虑了吗?③判别式验证了吗?⑵设而不求(代点相减法):--------处理弦中点问题步骤如下:①设点A(x1,y1)、B(x2,y2);②作差得 ;③解决问题。4.求轨迹的常用方法:(1)定义法:利用圆锥曲线的定义; (2)直接法(列等式);(3)代入法(相关点法或转移法);⑷待定系数法;(5)参数法;(6)交轨法。第七部分 平面向量⑴设a=(x1,y1),b=(x2,y2),则: ① a‖b(b≠0) a= b ( x1y2-x2y1=0;② a⊥b(a、b≠0) a•b=0 x1x2+y1y2=0 .⑵a•b=|a||b|cos<a,b>=x2+y1y2; 注:①|a|cos<a,b>叫做a在b方向上的投影;|b|cos<a,b>叫做b在a方向上的投影;6 a•b的几何意义:a•b等于|a|与|b|在a方向上的投影|b|cos<a,b>的乘积。⑶cos<a,b>= ;⑷三点共线的充要条件:P,A,B三点共线 ;附:(理科)P,A,B,C四点共面 。 第八部分 数列1.定义:⑴等差数列 ;⑵等比数列 ;2.等差、等比数列性质 等差数列 等比数列通项公式 前n项和 性质 ①an=am+ (n-m)d, ①an=amqn-m; ②m+n=p+q时am+an=ap+aq ②m+n=p+q时aman=apaq ③ 成AP ③ 成GP ④ 成AP, ④ 成GP, 等差数列特有性质:1 项数为2n时:S2n=n(an+an+1)=n(a1+a2n); ; ;2 项数为2n-1时:S2n-1=(2n-1) ; ; ;3 若 ;若 ;若 。3.数列通项的求法:⑴分析法;⑵定义法(利用AP,GP的定义);⑶公式法:累加法( ;⑷叠乘法( 型);⑸构造法( 型);(6)迭代法;⑺间接法(例如: );⑻作商法( 型);⑼待定系数法;⑽(理科)数学归纳法。注:当遇到 时,要分奇数项偶数项讨论,结果是分段形式。4.前 项和的求法:⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。5.等差数列前n项和最值的求法:⑴ ;⑵利用二次函数的图象与性质。 第九部分 不等式1.均值不等式: 注意:①一正二定三相等;②变形, 。2.绝对值不等式: 3.不等式的性质:⑴ ;⑵ ;⑶ ; ;⑷ ; ; ;⑸ ;(6) 。4.不等式等证明(主要)方法:⑴比较法:作差或作比;⑵综合法;⑶分析法。 第十部分 复数1.概念:⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;⑵z=a+bi是虚数 b≠0(a,b∈R);⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0;⑷a+bi=c+di a=c且c=d(a,b,c,d∈R);2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈R),则:(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)•(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;3.几个重要的结论: ;⑶ ;⑷ ⑸ 性质:T=4; ; (6) 以3为周期,且 ; =0;(7) 。4.运算律:(1) 5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。6.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;第十一部分 概率1.事件的关系:⑴事件B包含事件A:事件A发生,事件B一定发生,记作 ;⑵事件A与事件B相等:若 ,则事件A与B相等,记作A=B;⑶并(和)事件:某事件发生,当且仅当事件A发生或B发生,记作 (或 );⑷并(积)事件:某事件发生,当且仅当事件A发生且B发生,记作 (或 ) ;⑸事件A与事件B互斥:若 为不可能事件( ),则事件A与互斥;(6)对立事件: 为不可能事件, 为必然事件,则A与B互为对立事件。2.概率公式:⑴互斥事件(有一个发生)概率公式:P(A+B)=P(A)+P(B);⑵古典概型: ;⑶几何概型: ;第十二部分 统计与统计案例1.抽样方法⑴简单随机抽样:一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。注:①每个个体被抽到的概率为 ;②常用的简单随机抽样方法有:抽签法;随机数法。⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定其时个体编号 ;④按预先制定的规则抽取样本。⑶分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。注:每个部分所抽取的样本个体数=该部分个体数 2.总体特征数的估计:⑴样本平均数 ;⑵样本方差 ;⑶样本标准差 = ;3.相关系数(判定两个变量线性相关性): 注:⑴ >0时,变量 正相关; <0时,变量 负相关;⑵① 越接近于1,两个变量的线性相关性越强;② 接近于0时,两个变量之间几乎不存在线性相关关系。4.回归分析中回归效果的判定:⑴总偏差平方和: ⑵残差: ;⑶残差平方和: ;⑷回归平方和: - ;⑸相关指数 。注:① 得知越大,说明残差平方和越小,则模型拟合效果越好;② 越接近于1,,则回归效果越好。5.独立性检验(分类变量关系):随机变量 越大,说明两个分类变量,关系越强,反之,越弱。 第十四部分 常用逻辑用语与推理证明1. 四种命题:⑴原命题:若p则q; ⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p注:原命题与逆否命题等价;逆命题与否命题等价。2.充要条件的判断:(1)定义法----正、反方向推理;(2)利用集合间的包含关系:例如:若 ,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;3.逻辑连接词:⑴且(and) :命题形式 p q; p q p q p q p⑵或(or):命题形式 p q; 真 真 真 真 假⑶非(not):命题形式 p . 真 假 假 真 假 假 真 假 真 真 假 假 假 假 真4.全称量词与存在量词⑴全称量词-------“所有的”、“任意一个”等,用 表示; 全称命题p: ; 全称命题p的否定 p: 。⑵存在量词--------“存在一个”、“至少有一个”等,用 表示; 特称命题p: ; 特称命题p的否定 p: ;第十五部分 推理与证明1.推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。注:归纳推理是由部分到整体,由个别到一般的推理。②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。注:类比推理是特殊到特殊的推理。⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。注:演绎推理是由一般到特殊的推理。“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结 论---------根据一般原理,对特殊情况得出的判断。二.证明⒈直接证明⑴综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。⑵分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。2.间接证明------反证法一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。附:数学归纳法(仅限理科)一般的证明一个与正整数 有关的一个命题,可按以下步骤进行:⑴证明当 取第一个值 是命题成立;⑵假设当 命题成立,证明当 时命题也成立。那么由⑴⑵就可以判定命题对从 开始所有的正整数都成立。这种证明方法叫数学归纳法。注:①数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行;3 的取值视题目而4 定,5 可能是1,6 也可能是2等。第十六部分 理科选修部分1. 排列、组合和二项式定理⑴排列数公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),当m=n时为全排列 =n(n-1)(n-2)…3.2.1=n!;⑵组合数公式: (m≤n), ;⑶组合数性质: ;⑷二项式定理: ①通项: ②注意二项式系数与系数的区别;⑸二项式系数的性质:①与首末两端等距离的二项式系数相等;②若n为偶数,中间一项(第 +1项)二项式系数最大;若n为奇数,中间两项(第 和 +1项)二项式系数最大;③ (6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。2. 概率与统计⑴随机变量的分布列:①随机变量分布列的性质:pi≥0,i=1,2,…; p1+p2+…=1;②离散型随机变量:X x1 X2 … xn …P P1 P2 … Pn …期望:EX= x1p1 + x2p2 + … + xnpn + … ; 方差:DX= ;注: ;③两点分布: X 0 1 期望:EX=p;方差:DX=p(1-p). P 1-p p 4 超几何分布:一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则 其中, 。称分布列 X 0 1 … m P … 为超几何分布列, 称X服从超几何分布。⑤二项分布(独立重复试验):若X~B(n,p),则EX=np, DX=np(1- p);注: 。⑵条件概率:称 为在事件A发生的条件下,事件B发生的概率。注:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。⑶独立事件同时发生的概率:P(AB)=P(A)P(B)。⑷正态总体的概率密度函数: 式中 是参数,分别表示总体的平均数(期望值)与标准差;(6)正态曲线的性质:①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,关于直线x= 对称;③曲线在x= 处达到峰值 ;④曲线与x轴之间的面积为1;5 当 一定时,6 曲线随 质的变化沿x轴平移;7 当 一定时,8 曲线形状由 确定: 越大,9 曲线越“矮胖”,10 表示总体分布越集中; 越小,曲线越“高瘦”,表示总体分布越分散。注:P =0.6826;P =0.9544P =0.9974
我是高三之后才总结出学习数学的方法的,首先你必须对自己有信心。你得坚信我能学好数学。其次你说的题海战术,这是一个历史悠久的战术了,为什么这么多年还没有淘汰,就是它适合大多数的学生,你做题做的多,见得就多。即使你忘了,几天后在看印象绝对加深。你见过的题型越来越多,做题就越来越顺,做题就快,高三的时候你就有时间多复习别的东西。还有数学绝对离不开书上的公式,好好看。别让数学拉你的后腿本回答被提问者采纳
最多设置5个标签!
数学课堂学习的原则和基本方法
根据心理学的理论和数学的特点,分析数学课堂学习,应遵循以下原则:
动力性原则,循序渐进原则,独立思考原则,及时反馈原则,理论联系实际
的原则,并由此提出了以下的数学学习方法:
1.求教与自学相结合
在学习过程中,即要争取教师的指导和帮助,但是又不能处处依靠教师,
必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基
础上去寻求教师和同学的帮助。
2.学习与思考相结合
在学习过程中,对课本的内容要认真研究,提出疑问,追本究源。对每
一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴
含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径
和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。
3.学用结合,勤于实践
在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中
抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实
例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。
4.博观约取,由博返约
课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,
除了认真研究课本以外,还要阅读有关的课外资料,来扩大知识领域。同时
在广泛阅读的基础上,进行认真研究,掌握其知识结构。
5.既有模仿,又有创新
模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该
在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有
的框框,不囿于现成的模式。
6.及时复习增强记忆
课堂上学习的内容,必须当天消化,要先复习,后做练习,复习工作必
须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、
深刻化。
7.总结学习经验,评价学习效果
学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、
解题规律的掌握、学习方法与态度的调整和评判能力的提高。在学习过程中,
应注意总结听课、阅读和解题中的收获和体会。更深一步,是涉及到具体内容的学习方法。如,怎样学习数学概念、数
学公式、法则、数学定理、数学语言;怎样提高抽象概括能力、运算能力、
逻辑思维能力、空间想象能力、分析问题和解决问题的能力;怎样解数学题;
怎样克服学习中的差错;怎样获取学习的反馈信息;怎样进行解题过程的评
价与总结;怎样准备考试。对这些问题的进一步的研究和探索将更有利于中
学生对数学的学习。
历史上许多优秀的教育家、科学家,他们都有一套适合自己特点的学习
方法。比如,我国古代数学家祖冲之的学习方法概括起来是四个字:搜炼古
今。搜就是搜索,博采前人的成就,广泛地研究;炼是提炼,把各种主张拿
来比较研究,再经过自己的消化和提炼。著名的物理学家爱因斯坦的学习经验是:依靠自学,注意自主,穷根究底,大胆想象,力求理解,重视实验,
弄通数学,研究哲学等八个方面。如果我们能将这些教育家、科学家的更多
的学习经验挖掘整理出来,将是一批非常宝贵的财富,这也是学习方法研究
中的一个重要方面。
学习方法这一问题虽已为广大的教育工作者所重视,并且提出了不少好
的学习方法。但是由于长期以来“以教代学”的影响,大部分学生对自己的
学习方法是否良好还没有引起注意。许多学生还没有根据自己的特点形成适
合自己的有效的学习方法。因此作为一个自觉的学生,就必须在学习知识的
同时,掌握科学的学习方法。1.阅读课文
这是预习以下几个步骤的基础(参看后面介绍的各种阅读方法)。
2.亲自推导公式
数学课程中有大量的公式,有的课本上有推导过程;有的课本上没有推
导过程,只是把公式的最初形式写出来,然后说一句,“经推导可得”,就
把结果式子写出来了。无论课本上有无推导过程,学生预习的时候应当自己
合上书亲自把公式推导一遍;书上有推导过程的,可把自己推导过程和书上
的相对照;书上没有推导过程的可在课堂上和老师推导的过程相对照;以便
发现自己有没有推导错的地方。
自行推导公式既是自己在独立地分析问题和解决问题,又是在发现自己
的知识准备情况。通常,推导不下去或推导出现错误,都是由于自己的知识
准备不够,要么是学过的忘记了,要么是有些内容自己还没有学过,只要设
法补上,自己也就进步了。
3.扫除绊脚石
数学知识连续性强,前面的概念不理解,后面的课程无法学下去。预习
的时候发现学过的概念有不明白、不清楚的,一定要在课前搞清楚。
4.汇集定理、定律、公式、常数等
数学课程中大量的定理、定律、公式、常数、特定符号等,是学习数学
课程的最重要的内容,是需要深刻理解,牢牢记住的。所以,在预习的时候,
无论你做不做预习笔记,都应当把这些内容多带带汇集在一起,每抄录一遍,
则加深一次印象。上课的时候,老师讲到这些地方时,应把自己预习时的理
解和老师讲的相对照,看自己有没有理解错的地方。
5.试做练习
数学课本上的练习题都是为巩固所学的知识而出的。预习中可以试做那
些习题。之所以说试做,是因为并不强调要做对,而是用来检验自己预习的
效果。预习效果好,一般书后所附的习题是可以做出来的。数学概念学习八法
1.温故法
不论是皮亚杰还是奥苏伯尔在概念学习理论方面都认为概念教学的起步
是在已有的认知结论的基础上进行的。因此,教学新概念前,如果能对学生
认知结构中原有的概念适当作一些结构上的变化,引入新概念,则有利于促
进新概念的形成。
2.类比法
抓住新旧知识的本质联系,有目的、有计划地让学生将有关新旧知识进
行类比,就能很快地得出新旧知识在某些属性上的相同(相似)的结构而引
进概念。
3.喻理法
为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概
念,谓之喻理导入法。
如,学“用字母表示数”时,先出示的两句话:“阿 Q和小 D在看《W
的悲剧》。”、“我在A市S街上遇见一位朋友。”问:这两个句子中的字
母各表示什么?再出示扑克牌“红桃 A”,要求学生回答这里的A则表示什
么?最后出示等式“0.5×x=3.5”,擦去等号及 3.5,变成“0.5×x”后,
问两道式子里的X各表示什么?根据学生的回答,教师结合板书进行小结:
字母可以表示人名、地名和数,一个字母可以表示一个数,也可以表示任何
数。
这样,枯燥的概念变得生动、有趣,同学们在由衷的喜悦中进入了“字
母表示数”概念的学习。
4.置疑法
通过揭示数学自身的矛盾来引入新概念,以突出引进新概念的必要性和
合理性,调动了解新概念的强烈动机和愿望。
5.演示法
有些教学概念,如果把它最本质的属性用恰当的图形表示出来,把数与
形结合起来,使感性材料的提供更为丰富,则会收到良好效果,易于理解和
掌握。
如,学“求一个数的几倍是多少”的应用题,重要的是建立“倍”的概
念。引进这个概念,可出示2只一行的白蝴蝶图,再 2只、2只地出示3个2
只的第二行花蝴蝶图,结合演示,通过循序答问,使学生清晰地认识到:花
蝴蝶与白蝴蝶比较,白蝴蝶1个2只,花蝴蝶是3个2只;把一个2只当作1份,则白蝴蝶的只数相当于 1份,花蝴蝶就有 3份。用数学上的话说:花
蝴蝶与白蝴蝶比,把白蝴蝶当作一倍,花蝴蝶的只数就是白蝴蝶的3倍,这
样,从演示图形中让学生看到从“个数”到“份数”,再引出倍数,很快地
触及了概念的本质。
6.问答法
引入概念采用问答式,能在疑、答、辩的过程中,步步探幽,引人入胜。
7.作图法
用直尺、三角板和圆规等作图工具画出已学过的图形,是学习几何的最
基本的能力。通过作图揭示新概念的本质属性,就可以从画图引入这些概念。
8.计算法通过计算能揭示新概念的本质属性,因此,可以从学生所迅速的计算引
入新概念,如讲“余数”时,可以让学生计算下列各题:
(1) 3个人吃10个苹果,平均每人吃几个?
(2) 23名同学植100棵树,每人平均种几棵?
学生能很容易地列出算式,当计算时,见到余下来的数会不知所措,这
时教师再指出:
(1)题竖式中余下的“1”;(2)题竖式中余下的“8”,都小于除数,
在除法里叫做“余数”。学习新概念的方法很多,但彼此并不是孤立的,就
是同一个内容的学习方法也没有固定的模式,有时需要互相配合才能收到良
好的效果,如也可以这样引入“扇形’概念,让学生把课前带的一把摺扇一
折一折地从小到大展开,引导学生注意观察,然后概括出:
第一,折扇有一个固定的轴;
第二,折扇的“骨”等长。
然后再要求学生在已知圆内作两条半径,使它的夹角为20°、40°、120
°、……引导学生观察所围成的图形与刚才展开的折扇有哪些相似之处,最
后概括出扇形的意义。数学定义学习的步骤和方法
中学数学教学大纲指出“正确理解数学概念是掌握数学基础知识的前
提”。数学概念是现实世界空间形式和数量关系及其特征在思维中的反映。
概念是一种思维形式,客观事物通过人的感官形成感觉、知觉,通过大脑加
工——比较、分析、综合、概括——形成概念。建立一个概念,一般是运用
由特殊到一般、由局部到整体的观察方法,遵循由现象到本质,由具体到抽
象的认识规律,按照辩证唯物主义的观点去分析,找出事物的外部联系和内
在的本质。因此概念是培养学生逻辑思维能力的重要内容,概念又是思维的
工具,一切分析、推理、想象都要依据概念和运用概念,所以正确理解概念
是提高学生数学能力的前提,相反地,如果对学习概念重视不够,或是学生
方法不当,既影响对概念的理解和运用,也直接影响着思维能力的发展,就
会表现出路闭塞、逻辑紊乱的低能。中学数学中的概念多以定义的形式出现,
因此必须有学习定义的正确方法,一般说来,有以下几个环节。
1.从定义的建立过程明确定义
定义是在其形成的实际过程中逐步明朗化的。任何一个定义的产生都有
它的实际过程,学习定义时要想象前人发现定义过程,从定义形成的过程中,
认识其定义的必要性和合理性,这样可以达到理解定义训练思维的目的。
一个定义的形成,一般地说有四个阶段:(1)提出问题。
提出数学定义的常见方法有以下几种:
①从实例提出。理论的基础是实践,高中数学中大量的定义,如集合、
映射、一一映射、函数、等差数列、柱体、锥体等,都是从实例中归纳总结
出来的。
②通过迁移提出。数学的特征之一是它的系统性,因此常常可以从旧知
识过渡迁移而得出新的定义。如球的定义可以从圆的定义迁移而得出;双曲
线的定义可以从椭圆的定义迁移而得出;反三角函数的定义可以从反函数的
定义结合原来的习题迁移而得出等。
③观察图形或实物提出。“形”是数学研究的对象之一。观察函数的图
形可以得出函数的单调性、增减性、奇偶性、周期性等定义,观察空间的直
线与直线、直线与平面、平面和平面的位置关系可以得出异面直线、直线与
平面平行、相并和垂直的定义,平面与平面平行、相交和垂直的定义等。
④从形成的过程提出。数学中有些定义是通过实际操作而得出的,其操
作过程就是定义,这样的定义叫形成性定义。如圆、椭圆的定义,异面直线
所成的角、直线与平面所成的角、二面角的平面角等。
(2)探索问题的解答。
如果学生了解了一个新定义提出的方法,那么心理状况必是:对如何定义有迫切的愿望,因而兴趣被激发,积极主动地去思考得出概念的过程,急
切想通过自己冷静的思考去试寻问题的解答。这样既有利于掌握定义的本
质,又能较快地发展逻辑思维能力,提高分析问题和解决问题的能力。相反
地,如果只知是什么,而不知定义得出的过程,那么所学的知识往往是僵死
的,妨碍对定义的灵活运用,能力也得不到应有的提高。因此应该掌握并探
索问题解答的正确方法。
①从实例提出的定义,要对所举各例进行分析,去掉其个别的、非本质
的东西,抓住其共同的、本质的东西,抽象概括寻求问题的解答。②对通过迁移提出的定义,要在对旧知识准确理解与运用的基础上,进
行比较、分析、推理,去寻求问题的解答。
③对观察图形或实物得出的定义,按照观察的目的,运用正确的观察方
法,认真观察,仔细分析,同时还要对正反两方面的图形加以比较,去寻求
问题的解答。
④对于形成性定义,要亲自动手进行实际操作,同时操作的每一步都要
进行认真地分析,找出操作能顺利进行的条件或操作不能进行的原因,写出
使操作能顺利进行的操作过程,去寻求问题的解答。
(3)检验解答的合理性。
检验解答的合理性,可以通过实践,也可以利用已有的知识进行逻辑推
理。若发现有不合理的因素,要加以修改或补充,这样既可加深对定义的理
解,又可培养学生严谨的作风。
(4)写出合理的解答,即为定义。
2.剖析定义
(1)明确定义的本质和关键。建立定义以后,要养成剖析定义的习惯,首先要认真阅读课文,逐字逐句地进行推敲,结合定义形成的过程明确定义
的本质和关键。
(2)明确定义的充要性。凡是定义都是充要命题,如直线与平面垂直的
定义“如果一条直线和平面内的任何一条直线都垂直,就说这条直线和这个
平面互相垂直”;反过来,“如果一条直线垂直于一个平面,那么这条直线
就垂直于这个平面内的任何一条直线”仍成立,即直线ι垂直于平面α是ι
垂直于平面α内的任何一条直线的充要条件。又如椭圆的定义“平面内与两
个定点 F、F的距离之和等于常数 2a(2a>|FF|)的点的轨迹叫椭圆”;
1 2 1 2
反过来“椭圆上的任意一点到两个定点F、F的距离之和都等于常数 2a”。
1 2
再如“若函数f(x)对于定义内的每一个值x,都有f(-x)=f(x),则f
(x)叫做偶函数”;反过来,“如果函数 f(x)是偶函数,那么对于定义
域内的每一个值x都有f(-x)=f(x)”等等。
(3)突破定义的难点。对于一个定义,应突破它的难点。如 a+bi(a,
b ∈ R)为什么表示一个数,周期函数定义中的“对于函数定义域内的每一
个x的值”,数列的极限的定义中的“ε”、“N”等。都是难以理解的,要
认真思考,设法突破它,如举出实例并与定义相对照。加深对难点的理解,
纠正认识中的错误,以达到准确地理解定义的目的。
(4)明确定义的基本性质。对于一个定义,不仅要掌握其本身,还应掌
握它的一些基本性质。
(5)逆向分析。人的思维是可逆的。但必须有意识地去培养这种逆向思
维活动的能力。前面说过,定义都是充要命题,但对某些定义还应从多方设
问并思考。如对于正棱锥的概念可提出如下的几个问题,并思考。
①侧棱相等的棱锥是否一定是正棱锥?(不一定)
②侧面与底面所成的角相等的棱锥是否一定是正棱锥?(不一定)
③底面是正多边形的棱锥是否一定是正棱锥?(不一定)
④符合以上三条中的两条的棱锥是这一定是正棱锥?(一定)
⑤侧面是全等的等腰三角形的棱锥是否一定是正棱锥?(一定)(一定
的加以证明,不一定的举出反例)。
3.记忆定义只有在记忆中能随时再现的知识,才能有助于提高分析问题和解决问题
的能力,因此必须准确记忆定义。至于记忆方法这里不想多谈,只谈谈记忆
定义不应是孤立的。在建立定义时就要开始记忆,在剖析定义时要巩固记忆,
特别要弄清定义的基本结构。因为定义是充要命题,所以一般地说,定义是
由条件和结论两部分构成的。一般的句子形式是“如果…,那么…”。或“设…
则…”。对于逻辑结构复杂的定义,一般地是“设…,如果…,且…,那么…。”
如函数的定义“设f:A→B就是从定义域A到值域B上的函数。”这里“设…,”
是前提条件,“如果…”,是加强条件,“且…,”是又加强的条件,总之
这是条件部分,“那么…”是结论部分。
4.应用定义
应用定义解答具体问题的过程是培养演绎推理能力的过程。应用定义一
般可分三个阶段:
(1)复习巩固定义阶段。学习一个新定义之后,要进行复习巩固。首先
要认真阅读教材中给出的定义,领会定义的实质,再要举出实例与定义相对
照,加深对定义的理解,然后解答一些直接应用定义的问题题、判断题、选
择题或是推理计算题。一般地,在一个定义的后面紧跟的例题或练习题往往
是为此而安排的,要认真地,严格地按照定义,用准确的数学语言去解答,
且不可马虎草率,对说不出或出现错误的问题,要深究其原因,并在重新阅
读,复习定义的基础上,澄清定义,纠正错误。
(2)章节应用阶段。学完一章以后,要把本章中相近的定义,或是与原
来学过的相近的定义如排列与组合,球冠与球缺,函数与方程等有意识地用
比较的方法,明确它们的区别和联系。或是批判谬误,在批判错误的过程中,
找出错误的根源,以免产生概念间的互相干扰。
另外,要把本章中与某一定义有关的知识加以总结,与这一概念有关的
例题、练习题以归纳、总结出应用此定义的基本题型。
(3)灵活综合应用定义阶段。学习一个单元之后,由于知识的局限性,
往往很难把某些概念理解透彻,必须到一定的阶段进行这一概念的补课,特
别是数学中具有全局性的重要概念,如算术根及绝对值的概念、函数的概念,
充要条件的概念等,以克服只见树木不见森林的弊病,从而培养分析与综合
能力,训练辨析事物实质的思维能力。数学知识记忆方法
心理学告诉我们,记忆分无意记忆和有意记忆两种。要使记忆对象在大
脑中形成深刻的映象,一般来说要通过反复感知,有些记忆对象,由于有明
显的特征,只要通过一次感知就能记住,经久不忘,这就是无意记忆。有些
记忆对象,由于没有明显特征,即使通过三、五次感知,也很难记住,而且
容易遗忘,这就需要加强有意记忆。
1.口诀记忆法
中学数学中,有些方法如果能编成顺口溜或歌诀,可以帮助记忆。例如,
根据一元二次不等式ax+bx-c>0(a>0,△>0)与ax+bx+c(a>0,△>0)
的解法,可编成乘积或分式不等式的解法口诀:“两大写两旁,两小写中间”。
即两个一次因式之积(或商)大于 0,解答在两根之外;两个一次因式之积
(或商)小于 0,解答在两根之内。当然,使用口诀时,必先将各个一次因
式中X的系数化为正数。利用口诀时,必先将各个一次因式中X的系数化为
正数。利用这一口诀,我们就很容易写出乘积不等式(x-3)·(2x-1)>0
的解是x<-3或X>3,分式不等式<0
1
的解是-2<x< 。这种记忆法对低年级特别适用。
3
2.分类记忆法
遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。例如
求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个);
(2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4)
反三角函数的导数(6个)。求导法则有7个,可分为两组来记:(1)和差、
积、商复合函数的导数(4个);(2)反函数、隐函数、幂指数函数的导数
(3个)。
3.“四多”记忆法
要使记忆对象经久不忘,一般来说要经过多次反复的感知。“四多”即
多看、多听、多读、多写。特别是边读边默写,记忆效果更佳。例如,甲对
某组公式单纯抄写四次,乙对同组公式抄写两次然后默写(默写不出时可看
书)两次,实验证明,乙的记忆效果优于甲。
4.静心记忆法
记忆要从平心静气开始,根据一定的记忆目标,找出适合于自己学习特
点的记忆方法。比如记忆环境的选择就因人而异。有人觉得早晨记忆力好;
有人感到晚上记忆力好;有人习惯于边走边读边记;有人则要在安静的环境
下记忆才好等等。不管选择何种方式记忆,都必须保持“心静”。心静才能集中注意力记忆,心静才能形成记忆的优势兴奋中心,记忆需从静始!
5.首次记忆法
首次记忆有四种方式:
(1)背诵记忆法。将运算过程和结果在理解的基础上背诵记熟,这种记
忆称为背诵记忆。比如,加法与乘法法则,两数和、差的平方、立方的展开
式等记忆都是背诵记忆。
(2)模型记忆法。有许多数学知识有它具体的模型,我们可以通过模型
来记忆。有些数学知识可有规律的列在图表内,借助于图表来记忆,这些记
忆都称模型记忆。(3)差别记忆法。有些数学知识之间有许多共性,少数异性。要记住它
们,只需记住一个基本的和差异特征,就可以记住其它的了,这种记忆称为
差别记忆。
(4)推理记忆法。许多数学知识之间逻辑关系比较明显,要记住这些知
识,只需记忆一个,而其余可利用推理得到,这种记忆称为推理记忆。
例如,平行四边形的性质,我们只要记住它的定义,由定义推得它的任
一对角线把它分成两上全等三角形,继而又推得它的对边相等,对角相等,
相邻角互补,两条对角线互相平分等性质。
6.重复记忆
重复记忆有三种方式
(1)标志记忆法。在学习某一章节知识时,先看一遍,对于重要部分用
彩笔在下面画上波浪线,在重复记忆时,就不需要将整个章节的内容从头到
尾逐字逐句的看了,只要看到波浪线,在它的启示下就能重复记忆本章节主
要内容,这种记忆称为标志记忆。
(2)回想记忆法。在重复记忆某一章节的知识时,不看具体内容,而是
通过大脑回想达到重复记忆的目的,这种记忆称为回想记忆。在实际记忆时,
回想记忆法与标志记忆法是配合使用的。
(3)使用记忆法。在解数学题时,必须用到已记住的知识,使用一次有
关知识就被重复记忆一次,这种记忆称为使用记忆。使用记忆法是积极的记
忆,效果好。
7.理解记忆法
知识的理解是产生记忆的根本条件,对于数学知识特别要通过理解、掌
握它的逻辑结构体系进行记忆。由于数学是建立在逻辑学基础上的一门学
科,它的概念、法则的建立,定理的论证,公式的推导,无不处于一定的逻
辑体系之中,因此,对于数学知识的理解记忆,主要在于弄清数学知识的逻
辑联系,把握它的来龙去脉,只有理解了的东西才能牢固记住它。因此,数
学中的定理、公式、法则,都必须弄通它的来龙去脉,弄懂它们的证明过程,
以便牢固记住它们。
用好这一方法的关键,在于学习要注意理解,这一方法,不仅对于数学
学习,就是对于其它学科的学习都有着广泛的应用。应十分重视。
8.系统记忆法
有位青年总结自己的经验得出:“总结+消化=记忆”。这正是根据系统
记忆法的思想总结出来的。因为系统记忆法,就是按照数学知识的系统性,把知识进行恰当的比较、分类、条理化,顺理成章,编织成网,这样记住的
就不是零星的知识而是一串,它往往采取列表比较的形式,或抓住主线、内
在联系把重要概念、公式和章节联系串为一个整体。
我现在是高一的数学老师,下面是我的一点建议:
上课注意听老师讲的典型题,然后在听明白的基础上最相应的题型练习,不要求多,一定要把书上的题先作会,再做老师发的卷子和老师要讲的题,再这些的基础上找出自己不会的地方,看相应的课外书的相关内容的详解
在做限时练习,提高自己的做题效率
相信自己,经过这些练习一定能取得好成绩。
然后要注意平时多问老师,多和同学讨论问题把知识点弄明白。
高中数学合集百度 {MOD}下载
链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ
?pwd=1234提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
高考数学基础知识汇总
第一部分 集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;
(2) 注意:讨论的时候不要遗忘了 的情况。
(3)
第二部分 函数与导数
1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;
⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、 、 等);⑨导数法
3.复合函数的有关问题
(1)复合函数定义域求法:
① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数 分解为基本函数:内函数 与外函数 ;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数 的定义域是内函数 的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵ 是奇函数 ;
⑶ 是偶函数 ;
⑷奇函数 在原点有定义,则 ;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
6.函数的单调性
⑴单调性的定义:
① 在区间 上是增函数 当 时有 ;
② 在区间 上是减函数 当 时有 ;
⑵单调性的判定
1 定义法:
注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;
②导数法(见导数部分);
③复合函数法(见2 (2));
④图像法。
注:证明单调性主要用定义法和导数法。
7.函数的周期性
(1)周期性的定义:
对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。
所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。
(2)三角函数的周期
① ;② ;③ ;
④ ;⑤ ;
⑶函数周期的判定
①定义法(试值) ②图像法 ③公式法(利用(2)中结论)
⑷与周期有关的结论
① 或 的周期为 ;
② 的图象关于点 中心对称 周期为2 ;
③ 的图象关于直线 轴对称 周期为2 ;
④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;
8.基本初等函数的图像与性质
⑴幂函数: ( ;⑵指数函数: ;
⑶对数函数: ;⑷正弦函数: ;
⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;
⑻其它常用函数:
1 正比例函数: ;②反比例函数: ;特别的
2 函数 ;
9.二次函数:
⑴解析式:
①一般式: ;②顶点式: , 为顶点;
③零点式: 。
⑵二次函数问题解决需考虑的因素:
①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。
⑶二次函数问题解决方法:①数形结合;②分类讨论。
10.函数图象:
⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法
⑵图象变换:
1 平移变换:ⅰ ,2 ———“正左负右”
ⅱ ———“正上负下”;
3 伸缩变换:
ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;
ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;
4 对称变换:ⅰ ;ⅱ ;
ⅲ ; ⅳ ;
5 翻转变换:
ⅰ ———右不动,右向左翻( 在 左侧图象去掉);
ⅱ ———上不动,下向上翻(| |在 下面无图象);
11.函数图象(曲线)对称性的证明
(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;
注:
①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;
③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;
特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;
⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
12.函数零点的求法:
⑴直接法(求 的根);⑵图象法;⑶二分法.
13.导数
⑴导数定义:f(x)在点x0处的导数记作 ;
⑵常见函数的导数公式: ① ;② ;③ ;
④ ;⑤ ;⑥ ;⑦ ;
⑧ 。
⑶导数的四则运算法则:
⑷(理科)复合函数的导数:
⑸导数的应用:
①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?
②利用导数判断函数单调性:
ⅰ 是增函数;ⅱ 为减函数;
ⅲ 为常数;
③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。
④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。
14.(理科)定积分
⑴定积分的定义:
⑵定积分的性质:① ( 常数);
② ;
③ (其中 。
⑶微积分基本定理(牛顿—莱布尼兹公式):
⑷定积分的应用:①求曲边梯形的面积: ;
3 求变速直线运动的路程: ;③求变力做功: 。
第三部分 三角函数、三角恒等变换与解三角形
1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度
⑵弧长公式: ;扇形面积公式: 。
2.三角函数定义:角 中边上任意一点 为 ,设 则:
3.三角函数符号规律:一全正,二正弦,三两切,四余弦;
4.诱导公式记忆规律:“函数名不(改)变,符号看象限”;
5.⑴ 对称轴: ;对称中心: ;
⑵ 对称轴: ;对称中心: ;
6.同角三角函数的基本关系: ;
7.两角和与差的正弦、余弦、正切公式:①
② ③ 。
8.二倍角公式:① ;
② ;③ 。
9.正、余弦定理:
⑴正弦定理: ( 是 外接圆直径 )
注:① ;② ;③ 。
⑵余弦定理: 等三个;注: 等三个。
10。几个公式:
⑴三角形面积公式: ;
⑵内切圆半径r= ;外接圆直径2R=
11.已知 时三角形解的个数的判定:
第四部分 立体几何
1.三视图与直观图:注:原图形与直观图面积之比为 。
2.表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:
⑶台体:①表面积:S=S侧+S上底S下底;②侧面积:S侧= ;③体积:V= (S+ )h;
⑷球体:①表面积:S= ;②体积:V= 。
3.位置关系的证明(主要方法):
⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。
⑵直线与平面平行:①线面平行的判定定理;②面面平行 线面平行。
⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。
⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。
⑸平面与平面垂直:①定义---两平面所成二面角为直角;②面面垂直的判定定理。
注:理科还可用向量法。
4.求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角)
⑴异面直线所成角的求法:
1 平移法:平移直线,2 构造三角形;
3 ②补形法:补成正方体、平行六面体、长方体等,4 发现两条异面直线间的关系。
注:理科还可用向量法,转化为两直线方向向量的夹角。
⑵直线与平面所成的角:
①直接法(利用线面角定义);②先求斜线上的点到平面距离h,与斜线段长度作比,得sin 。
注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。
⑶二面角的求法:
①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;
②三垂线法:由一个半面内一点作(或找)到另一个半平面的垂线,用三垂线定理或逆定理作出二面角的平面角,再求解;
③射影法:利用面积射影公式: ,其中 为平面角的大小;
注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;
理科还可用向量法,转化为两个班平面法向量的夹角。
5.求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离)
⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;
⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;
⑶点到平面的距离:
①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;
5 等体积法;
理科还可用向量法: 。
⑷球面距离:(步骤)
(Ⅰ)求线段AB的长;(Ⅱ)求球心角∠AOB的弧度数;(Ⅲ)求劣弧AB的长。
6.结论:
⑴从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;
⑵立平斜公式(最小角定理公式):
⑶正棱锥的各侧面与底面所成的角相等,记为 ,则S侧cos =S底;
⑷长方体的性质
①长方体体对角线与过同一顶点的三条棱所成的角分别为 则:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。
②长方体体对角线与过同一顶点的三侧面所成的角分别为 则有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。
⑸正四面体的性质:设棱长为 ,则正四面体的:
1 高: ;②对棱间距离: ;③相邻两面所成角余弦值: ;④内切2 球半径: ;外接球半径: ;
第五部分 直线与圆
1.直线方程
⑴点斜式: ;⑵斜截式: ;⑶截距式: ;
⑷两点式: ;⑸一般式: ,(A,B不全为0)。
(直线的方向向量:( ,法向量(
2.求解线性规划问题的步骤是:
(1)列约束条件;(2)作可行域,写目标函数;(3)确定目标函数的最优解。
3.两条直线的位置关系:
4.直线系
5.几个公式
⑴设A(x1,y1)、B(x2,y2)、C(x3,y3),⊿ABC的重心G:( );
⑵点P(x0,y0)到直线Ax+By+C=0的距离: ;
⑶两条平行线Ax+By+C1=0与 Ax+By+C2=0的距离是 ;
6.圆的方程:
⑴标准方程:① ;② 。
⑵一般方程: (
注:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆 A=C≠0且B=0且D2+E2-4AF>0;
7.圆的方程的求法:⑴待定系数法;⑵几何法;⑶圆系法。
8.圆系:
⑴ ;
注:当 时表示两圆交线。
⑵ 。
9.点、直线与圆的位置关系:(主要掌握几何法)
⑴点与圆的位置关系:( 表示点到圆心的距离)
① 点在圆上;② 点在圆内;③ 点在圆外。
⑵直线与圆的位置关系:( 表示圆心到直线的距离)
① 相切;② 相交;③ 相离。
⑶圆与圆的位置关系:( 表示圆心距, 表示两圆半径,且 )
① 相离;② 外切;③ 相交;
④ 内切;⑤ 内含。
10.与圆有关的结论:
⑴过圆x2+y2=r2上的点M(x0,y0)的切线方程为:x0x+y0y=r2;
过圆(x-a)2+(y-b)2=r2上的点M(x0,y0)的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2;
⑵以A(x1,y2)、B(x2,y2)为直径的圆的方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0。
第六部分 圆锥曲线
1.定义:⑴椭圆: ;
⑵双曲线: ;⑶抛物线:略
2.结论
⑴焦半径:①椭圆: (e为离心率); (左“+”右“-”);
②抛物线:
⑵弦长公式:
;
注:(Ⅰ)焦点弦长:①椭圆: ;②抛物线: =x1+x2+p= ;(Ⅱ)通径(最短弦):①椭圆、双曲线: ;②抛物线:2p。
⑶过两点的椭圆、双曲线标准方程可设为: ( 同时大于0时表示椭圆, 时表示双曲线);
⑷椭圆中的结论:
①内接矩形最大面积 :2ab;
②P,Q为椭圆上任意两点,且OP 0Q,则 ;
③椭圆焦点三角形:<Ⅰ>. ,( );<Ⅱ>.点 是 内心, 交 于点 ,则 ;
④当点 与椭圆短轴顶点重合时 最大;
⑸双曲线中的结论:
①双曲线 (a>0,b>0)的渐近线: ;
②共渐进线 的双曲线标准方程为 为参数, ≠0);
③双曲线焦点三角形:<Ⅰ>. ,( );<Ⅱ>.P是双曲线 - =1(a>0,b>0)的左(右)支上一点,F1、F2分别为左、右焦点,则△PF1F2的内切圆的圆心横坐标为 ;
④双曲线为等轴双曲线 渐近线为 渐近线互相垂直;
(6)抛物线中的结论:
①抛物线y2=2px(p>0)的焦点弦AB性质:<Ⅰ>. x1x2= ;y1y2=-p2;
<Ⅱ>. ;<Ⅲ>.以AB为直径的圆与准线相切;<Ⅳ>.以AF(或BF)为直径的圆与 轴相切;<Ⅴ>. 。
②抛物线y2=2px(p>0)内结直角三角形OAB的性质:
<Ⅰ>. ; <Ⅱ>. 恒过定点 ;
<Ⅲ>. 中点轨迹方程: ;<Ⅳ>. ,则 轨迹方程为: ;<Ⅴ>. 。
③抛物线y2=2px(p>0),对称轴上一定点 ,则:
<Ⅰ>.当 时,顶点到点A距离最小,最小值为 ;<Ⅱ>.当 时,抛物线上有关于 轴对称的两点到点A距离最小,最小值为 。
3.直线与圆锥曲线问题解法:
⑴直接法(通法):联立直线与圆锥曲线方程,构造一元二次方程求解。
注意以下问题:
①联立的关于“ ”还是关于“ ”的一元二次方程?
②直线斜率不存在时考虑了吗?
③判别式验证了吗?
⑵设而不求(代点相减法):--------处理弦中点问题
步骤如下:①设点A(x1,y1)、B(x2,y2);②作差得 ;③解决问题。
4.求轨迹的常用方法:(1)定义法:利用圆锥曲线的定义; (2)直接法(列等式);(3)代入法(相关点法或转移法);⑷待定系数法;(5)参数法;(6)交轨法。
第七部分 平面向量
⑴设a=(x1,y1),b=(x2,y2),则: ① a‖b(b≠0) a= b ( x1y2-x2y1=0;
② a⊥b(a、b≠0) a•b=0 x1x2+y1y2=0 .
⑵a•b=|a||b|cos<a,b>=x2+y1y2;
注:①|a|cos<a,b>叫做a在b方向上的投影;|b|cos<a,b>叫做b在a方向上的投影;
6 a•b的几何意义:a•b等于|a|与|b|在a方向上的投影|b|cos<a,b>的乘积。
⑶cos<a,b>= ;
⑷三点共线的充要条件:P,A,B三点共线 ;
附:(理科)P,A,B,C四点共面 。
第八部分 数列
1.定义:
⑴等差数列 ;
⑵等比数列
;
2.等差、等比数列性质
等差数列 等比数列
通项公式
前n项和
性质 ①an=am+ (n-m)d, ①an=amqn-m;
②m+n=p+q时am+an=ap+aq ②m+n=p+q时aman=apaq
③ 成AP ③ 成GP
④ 成AP, ④ 成GP,
等差数列特有性质:
1 项数为2n时:S2n=n(an+an+1)=n(a1+a2n); ; ;
2 项数为2n-1时:S2n-1=(2n-1) ; ; ;
3 若 ;若 ;
若 。
3.数列通项的求法:
⑴分析法;⑵定义法(利用AP,GP的定义);⑶公式法:累加法( ;
⑷叠乘法( 型);⑸构造法( 型);(6)迭代法;
⑺间接法(例如: );⑻作商法( 型);⑼待定系数法;⑽(理科)数学归纳法。
注:当遇到 时,要分奇数项偶数项讨论,结果是分段形式。
4.前 项和的求法:
⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。
5.等差数列前n项和最值的求法:
⑴ ;⑵利用二次函数的图象与性质。
第九部分 不等式
1.均值不等式:
注意:①一正二定三相等;②变形, 。
2.绝对值不等式:
3.不等式的性质:
⑴ ;⑵ ;⑶ ;
;⑷ ; ;
;⑸ ;(6)
。
4.不等式等证明(主要)方法:
⑴比较法:作差或作比;⑵综合法;⑶分析法。
第十部分 复数
1.概念:
⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;
⑵z=a+bi是虚数 b≠0(a,b∈R);
⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0;
⑷a+bi=c+di a=c且c=d(a,b,c,d∈R);
2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈R),则:
(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)•(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;
3.几个重要的结论:
;⑶ ;⑷
⑸ 性质:T=4; ;
(6) 以3为周期,且 ; =0;
(7) 。
4.运算律:(1)
5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。
6.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;
第十一部分 概率
1.事件的关系:
⑴事件B包含事件A:事件A发生,事件B一定发生,记作 ;
⑵事件A与事件B相等:若 ,则事件A与B相等,记作A=B;
⑶并(和)事件:某事件发生,当且仅当事件A发生或B发生,记作 (或 );
⑷并(积)事件:某事件发生,当且仅当事件A发生且B发生,记作 (或 ) ;
⑸事件A与事件B互斥:若 为不可能事件( ),则事件A与互斥;
(6)对立事件: 为不可能事件, 为必然事件,则A与B互为对立事件。
2.概率公式:
⑴互斥事件(有一个发生)概率公式:P(A+B)=P(A)+P(B);
⑵古典概型: ;
⑶几何概型: ;
第十二部分 统计与统计案例
1.抽样方法
⑴简单随机抽样:一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。
注:①每个个体被抽到的概率为 ;
②常用的简单随机抽样方法有:抽签法;随机数法。
⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的
规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。
注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定其时个体编号 ;
④按预先制定的规则抽取样本。
⑶分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。
注:每个部分所抽取的样本个体数=该部分个体数
2.总体特征数的估计:
⑴样本平均数 ;
⑵样本方差 ;
⑶样本标准差 = ;
3.相关系数(判定两个变量线性相关性):
注:⑴ >0时,变量 正相关; <0时,变量 负相关;
⑵① 越接近于1,两个变量的线性相关性越强;② 接近于0时,两个变量之间几乎不存在线性相关关系。
4.回归分析中回归效果的判定:
⑴总偏差平方和: ⑵残差: ;⑶残差平方和: ;⑷回归平方和: - ;⑸相关指数 。
注:① 得知越大,说明残差平方和越小,则模型拟合效果越好;
② 越接近于1,,则回归效果越好。
5.独立性检验(分类变量关系):
随机变量 越大,说明两个分类变量,关系越强,反之,越弱。
第十四部分 常用逻辑用语与推理证明
1. 四种命题:
⑴原命题:若p则q; ⑵逆命题:若q则p;
⑶否命题:若 p则 q;⑷逆否命题:若 q则 p
注:原命题与逆否命题等价;逆命题与否命题等价。
2.充要条件的判断:
(1)定义法----正、反方向推理;
(2)利用集合间的包含关系:例如:若 ,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;
3.逻辑连接词:
⑴且(and) :命题形式 p q; p q p q p q p
⑵或(or):命题形式 p q; 真 真 真 真 假
⑶非(not):命题形式 p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
4.全称量词与存在量词
⑴全称量词-------“所有的”、“任意一个”等,用 表示;
全称命题p: ;
全称命题p的否定 p: 。
⑵存在量词--------“存在一个”、“至少有一个”等,用 表示;
特称命题p: ;
特称命题p的否定 p: ;
第十五部分 推理与证明
1.推理:
⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
注:归纳推理是由部分到整体,由个别到一般的推理。
②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
注:类比推理是特殊到特殊的推理。
⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。
注:演绎推理是由一般到特殊的推理。
“三段论”是演绎推理的一般模式,包括:
⑴大前提---------已知的一般结论;
⑵小前提---------所研究的特殊情况;
⑶结 论---------根据一般原理,对特殊情况得出的判断。
二.证明
⒈直接证明
⑴综合法
一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。
⑵分析法
一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。
2.间接证明------反证法
一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。
附:数学归纳法(仅限理科)
一般的证明一个与正整数 有关的一个命题,可按以下步骤进行:
⑴证明当 取第一个值 是命题成立;
⑵假设当 命题成立,证明当 时命题也成立。
那么由⑴⑵就可以判定命题对从 开始所有的正整数都成立。
这种证明方法叫数学归纳法。
注:①数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行;
3 的取值视题目而4 定,5 可能是1,6 也可能是2等。
第十六部分 理科选修部分
1. 排列、组合和二项式定理
⑴排列数公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),当m=n时为全排列 =n(n-1)(n-2)…3.2.1=n!;
⑵组合数公式: (m≤n), ;
⑶组合数性质: ;
⑷二项式定理:
①通项: ②注意二项式系数与系数的区别;
⑸二项式系数的性质:
①与首末两端等距离的二项式系数相等;②若n为偶数,中间一项(第 +1项)二项式系数最大;若n为奇数,中间两项(第 和 +1项)二项式系数最大;
③
(6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。
2. 概率与统计
⑴随机变量的分布列:
①随机变量分布列的性质:pi≥0,i=1,2,…; p1+p2+…=1;
②离散型随机变量:
X x1 X2 … xn …
P P1 P2 … Pn …
期望:EX= x1p1 + x2p2 + … + xnpn + … ;
方差:DX= ;
注: ;
③两点分布:
X 0 1 期望:EX=p;方差:DX=p(1-p).
P 1-p p
4 超几何分布:
一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则 其中, 。
称分布列
X 0 1 … m
P …
为超几何分布列, 称X服从超几何分布。
⑤二项分布(独立重复试验):
若X~B(n,p),则EX=np, DX=np(1- p);注: 。
⑵条件概率:称 为在事件A发生的条件下,事件B发生的概率。
注:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。
⑶独立事件同时发生的概率:P(AB)=P(A)P(B)。
⑷正态总体的概率密度函数: 式中 是参数,分别表示总体的平均数(期望值)与标准差;
(6)正态曲线的性质:
①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,关于直线x= 对称;
③曲线在x= 处达到峰值 ;④曲线与x轴之间的面积为1;
5 当 一定时,6 曲线随 质的变化沿x轴平移;
7 当 一定时,8 曲线形状由 确定: 越大,9 曲线越“矮胖”,10 表示总体分布越集中;
越小,曲线越“高瘦”,表示总体分布越分散。
注:P =0.6826;P =0.9544
P =0.9974
我是高三之后才总结出学习数学的方法的,首先你必须对自己有信心。你得坚信我能学好数学。其次你说的题海战术,这是一个历史悠久的战术了,为什么这么多年还没有淘汰,就是它适合大多数的学生,你做题做的多,见得就多。即使你忘了,几天后在看印象绝对加深。你见过的题型越来越多,做题就越来越顺,做题就快,高三的时候你就有时间多复习别的东西。还有数学绝对离不开书上的公式,好好看。别让数学拉你的后腿本回答被提问者采纳